Daniel Flores Araiza
@delfox29
Ph.D. Student at ITESM, working on XAI and Causality
I like to know about ML/AI, games, gadgets, innovations, and space
ID: 208877549
https://github.com/DanielF29 28-10-2010 03:09:36
6,6K Tweet
232 Followers
933 Following
Here some of the mentos and mentees: Enzo Ferrante Luis S. Luévano, PhD Ivan Reyes Francisco Lopez-Tiro Daniel Flores Araiza (4/5)
Conversamos en FRANCE 24 Español sobre las consecuencias de la #InteligenciaArtificial en la Unión Europea Ulises Cortés y su servidor. Aquí el video completo: france24.com/es/programas/e… SMIA Alianza Nacional de Inteligencia Artificial México Tecnológico de Monterrey TecScience Universitat Politècnica de Catalunya (UPC) BSC-CNS
¡Únete al 37th International Symposium on Computer Based Medical Systems 2024 en TEC Campus Guadalajara . ¡Regístrate ahora en 🔵bit.ly/3x4ESBW y únete a esta experiencia de vanguardia en el ámbito de la informática médica y biomédica!
Time to have some rest! We (CV-INSIDE Lab lab) and our collaborators from Universitat Politecnica de Catalunya, University of Leeds and Université de Lorraine we able to submit 9 (nine!) papers to IEEE IEEE Computer-Based Medical Systems! We are looking forward to meet you in Guadalajara 😁 Thanks to
¿Quieres saber cómo se aplica la #InteligenciaArtificial en el área médica? 🥼🩻🩺 Disfruta la entrevista que le realizaron al Dr. Beto Ochoa-Ruiz, especialista en Computer Vision and Robotics del Tec Campus GDL en radio Radio UAEH Huejutla 🎙️📻 Entrevista: fb.watch/rKsX8u4-4c/?mi… #RT
Super happy and proud 🤩 Our lab had 8 papers accepted IEEE Computer-Based Medical Systems! Really hard work of CV-INSIDE Lab PhD & MSc students : Francisco Lopez-Tiro Ricardo Espinosa Mansoor Alex Daniel Flores Araiza Ivan Reyes and many others 🥳🥳🥳! Collabs with colleagues @sharib from AI_in_Medicine_Surgery,
Daniel Flores Araiza Daniel Flores Araiza está en el Congreso Mexicano de IA SMIA presentando su trabajo en causalidad en clasificación de cálculos renales 😀 CV-INSIDE Lab lab present
We also had a roundtable with PhD studends from my CV-INSIDE Lab lab: Ivan Reyes Daniel Flores Araiza Francisco Lopez-Tiro Ricardo Espinosa who shared tips and insights as new comers (they attended CVPR 2022 the first time) Thanks to Ivan Reyes for helping to make this possible
Explore the limitations of current interpretable machine learning methods and learn how to enhance model transparency. One of the authors of this open-sourse book is Christoph Molnar 🦋 christophmolnar.bsky.social, who is also renowned for his influential work on interpretable machine learning.
Our work on "Improving Prototypical Parts Abstraction for Case-Based Reasoning Explanations Designed for the Kidney Stone Type Recognition" by Daniel Flores Araiza is finally online (under consideration for a a journa!) Give it a look here --> arxiv.org/pdf/2409.12883