
Hansi Zeng
@hansizeng
CS PhD @ UMass Amherst CIIR | Prev Intern @GoogleDeepMind, @Amazon @Lowes
ID: 1103796483382497282
https://hansizeng.github.io/ 07-03-2019 23:16:03
45 Tweet
298 Followers
359 Following


Join us next Friday, June 28th, for our last SEA meet-up before the summer break! ๐ @snbruch (Pinecone) and Hansi Zeng (UMass Amherst) will discuss recent innovations in search indexing for dense retrieval and in scaling generative IR. Sign up here ๐ meetup.com/de-DE/sea-searโฆ



๐ฅ Unleashing the Power of Inference Scaling in Long-Context RAG ๐ฅ Excited to share our latest research Google DeepMind "Inference Scaling for Long-Context Retrieval Augmented Generation (RAG)" ๐, in collaboration with Honglei Zhuang Aijun Bai Kai Hui Rolf Jagerman Hansi Zeng





Scaling Sparse and Dense Retrieval in Decoder-Only LLMs Hansi Zeng et al investigate how different retrieval paradigms scale with larger models, showing sparse retrieval consistently outperforms dense retrieval while demonstrating better generalization ๐arxiv.org/abs/2502.15526

๐ Introducing ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต-๐ฅ๐ญ โ the first ๐ฟ๐ฒ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป ๐ผ๐ณ ๐๐ฒ๐ฒ๐ฝ๐๐ฒ๐ฒ๐ธ-๐ฅ๐ญ (๐๐ฒ๐ฟ๐ผ) for training reasoning and search-augmented LLM agents with reinforcement learning! This is a step towards training an ๐ผ๐ฝ๐ฒ๐ป-๐๐ผ๐๐ฟ๐ฐ๐ฒ ๐ข๐ฝ๐ฒ๐ป๐๐ โ๐๐ฒ๐ฒ๐ฝ

๐ Excited to announce that our paper ๐๐๐๐ซ๐๐ก-๐๐ is now live! ๐ We introduce an RL framework (an extension of ๐๐๐๐ฉ๐ฌ๐๐๐ค-๐๐) for training reasoning-and-retrieval interleaved LLMs. Weโre also open-sourcing all resourcesโmodels, data, and more! ๐ Paper:



Iโm thrilled to share that two of my papers were accepted to SIGIR 2025: โHypencoder: Hypernetworks for Information Retrievalโ and โScaling Sparse and Dense Retrieval in Decoder-Only LLMsโ with Hansi Zeng Hamed Zamani

๐จ Big updates to ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต-๐ฅ๐ญ! ๐ ๐ง Now supports ๐บ๐๐น๐๐ถ-๐ป๐ผ๐ฑ๐ฒ ๐๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด โ train 32B+ LLMs with search + reasoning: github.com/PeterGriffinJiโฆ ๐ Added support for ๐น๐ผ๐ฐ๐ฎ๐น ๐๐ฝ๐ฎ๐ฟ๐๐ฒ/๐ฑ๐ฒ๐ป๐๐ฒ ๐ฟ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฒ๐ฟ๐ & ๐ผ๐ป๐น๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต