𝙩𝙮≃𝙛{𝕩}^A𝕀²·ℙarad𝕚g𝕞 (@tangsoft) 's Twitter Profile
𝙩𝙮≃𝙛{𝕩}^A𝕀²·ℙarad𝕚g𝕞

@tangsoft

vibe pretraining of 𝕀²·ℙarad𝕚g𝕞|关于神经网络学习•智能•秩序^造物主意志或其代理现象观察与解构| Paradigm 𝕚s aˡˡ ᵁ ᴺᵉᵉᵈ^范式思维课|构建智能第一性原则认知|身心大模型炼丹师|再AI十年之三:𝕀²·ℙarad𝕚g𝕞 RL grounding...

ID: 23062740

calendar_today06-03-2009 13:32:26

17,17K Tweet

9,9K Followers

2,2K Following

𝙩𝙮≃𝙛{𝕩}^A𝕀²·ℙarad𝕚g𝕞 (@tangsoft) 's Twitter Profile Photo

看到Anthorpic怎么在组织内部使用claude code,我觉得大部分文本产出类的工作都危险了… www-cdn.anthropic.com/58284b19e702b4…

看到Anthorpic怎么在组织内部使用claude code,我觉得大部分文本产出类的工作都危险了…

www-cdn.anthropic.com/58284b19e702b4…
Santiago (@svpino) 's Twitter Profile Photo

So, what exactly is an "agent"? I've spent a ton of time trying to define this because nobody seems to be on the same page. Anthropic's definition is my favorite one by far. We have 3 different concepts: 1. Agentic systems 2. Agentic workflows 3. Agents Let's define them one

So, what exactly is an "agent"?

I've spent a ton of time trying to define this because nobody seems to be on the same page. Anthropic's definition is my favorite one by far.

We have 3 different concepts:

1. Agentic systems
2. Agentic workflows
3. Agents

Let's define them one
Z.ai (@zai_org) 's Twitter Profile Photo

Introducing GLM-4.5 and GLM-4.5 Air: new flagship models designed to unify frontier reasoning, coding, and agentic capabilities. GLM-4.5: 355B total / 32B active parameters GLM-4.5-Air: 106B total / 12B active parameters API Pricing (per 1M tokens): GLM-4.5: $0.6 Input / $2.2

Introducing GLM-4.5 and GLM-4.5 Air: new flagship models designed to unify frontier reasoning, coding, and agentic capabilities.

GLM-4.5: 355B total / 32B active parameters
GLM-4.5-Air: 106B total / 12B active parameters

API Pricing (per 1M tokens):
GLM-4.5: $0.6 Input / $2.2
Min Choi (@minchoi) 's Twitter Profile Photo

Less than 89 hours ago, Claude Code unlocked sub agents. Minds are blown. And people are already building with their own agentic AI dev team. 10 wild examples:

Less than 89 hours ago, Claude Code unlocked sub agents.

Minds are blown.  And people are already building with their own agentic AI dev team.

10 wild examples:
𝙩𝙮≃𝙛{𝕩}^A𝕀²·ℙarad𝕚g𝕞 (@tangsoft) 's Twitter Profile Photo

非常棒的讨论。必须要mark。 agent和workflow并不互斥,可以并存,我倾向于是嵌套的关系,agent>workflow,确定性的、经常重复的过程可以固化下来成为workflow,为agent解决问题所用。 我觉得随着llm的生成能力的提升,完全可以由agent来生成workflow。类似flowreasoner的方向。

𝙩𝙮≃𝙛{𝕩}^A𝕀²·ℙarad𝕚g𝕞 (@tangsoft) 's Twitter Profile Photo

和LLM这类认知智能系统交互,与其他的系统都不太一样的地方是:meta interaction 可能源自这类系统的meta learning特性。 就是你可以一直回溯,只到能继续这种交互。 从最早的prompt,如果你不知道提问,你可以问LLM怎么写提示词;今天的vibe coding也一样,你可以一直回溯到你怎么敲下claude