James Rowbottom (@_jrowbottom) 's Twitter Profile
James Rowbottom

@_jrowbottom

Interested in geometric deep learning and dynamical systems. Former @twitterresearch intern. Beginning the PhD application cycle.

ID: 1022228431998779416

calendar_today25-07-2018 21:13:45

16 Tweet

208 Followers

943 Following

Michael Bronstein @ICLR2025 🇸🇬 (@mmbronstein) 's Twitter Profile Photo

#GNNs are related to PDEs governing information diffusion on graphs. In a new paper with @b_p_chamberlain James Rowbottom Maria Gorinova Stefan Webb Emanuele Rossi we study a new class of Neural Graph Diffusion PDEs Blog post: bit.ly/3gUOEL8 Paper: arxiv.org/abs/2106.10934

#GNNs are related to PDEs governing information diffusion on graphs. In a new paper with @b_p_chamberlain James Rowbottom <a href="/migorinova/">Maria Gorinova</a> <a href="/stefan_webb/">Stefan Webb</a> <a href="/emaros96/">Emanuele Rossi</a>  we study a new class of Neural Graph Diffusion PDEs

Blog post: bit.ly/3gUOEL8

Paper: arxiv.org/abs/2106.10934
Ben Chamberlain (@drbpchamberlain) 's Twitter Profile Photo

1/4 Hope to see friends new & old tomorrow 4:30pm GMT / 8:30am PT poster session 6 #NeurIPS2021 James Rowbottom Francesco Di Giovanni and I will occupy the prime virtual real estate known as Spot E3 with BLEND neurips.cc/virtual/2021/p…

1/4 Hope to see friends new &amp; old tomorrow 4:30pm GMT / 8:30am PT poster session 6 #NeurIPS2021 <a href="/_JRowbottom/">James Rowbottom</a> <a href="/Francesco_dgv/">Francesco Di Giovanni</a> and I will occupy the prime virtual real estate known as Spot E3 with BLEND neurips.cc/virtual/2021/p…
Francesco Di Giovanni (@francesco_dgv) 's Twitter Profile Photo

I am happy to share a recent work on energy functionals giving rise to GNN equations via gradient flows 🧵 arxiv.org/abs/2206.10991 This is joint work with James Rowbottom*, @b_p_chamberlain, T. Markovich, and Michael Bronstein

I am happy to share a recent work on energy functionals giving rise to GNN equations via gradient flows 🧵

arxiv.org/abs/2206.10991

This is joint work with <a href="/_JRowbottom/">James Rowbottom</a>*, @b_p_chamberlain, T. Markovich, and <a href="/mmbronstein/">Michael Bronstein</a>
Konstantin Rusch@ICLR2025 🇸🇬 (@tk_rusch) 's Twitter Profile Photo

Looking forward to giving an invited (and in-person!) talk in Jure Leskovec's group tomorrow Stanford University. I'll talk about our latest take on physics-inspired learning on graphs using non-linear oscillators. arxiv: arxiv.org/abs/2202.02296 code: github.com/tk-rusch/Graph… w/ Michael Bronstein

Accepted papers at TMLR (@tmlrpub) 's Twitter Profile Photo

Equivariant Mesh Attention Networks Sourya Basu, Jose Gallego-Posada, Francesco Viganò, James Rowbottom, Taco Cohen openreview.net/forum?id=3IqqJ…

Francesco Di Giovanni (@francesco_dgv) 's Twitter Profile Photo

This is a super accessible explanation* of our gradient flow work and it's based on a recent arXiv version contanining new theoretical results and experiments *Beware, great meme ahead

Michael Bronstein @ICLR2025 🇸🇬 (@mmbronstein) 's Twitter Profile Photo

@thomaskipf and Max Welling strike back! in a new blog post w/ Francesco Di Giovanni James Rowbottom et al we show that GCN-type models can be derived as gradient flows of Dirichlet-type energy and provably avoid low-frequency dominated dynamics bit.ly/3TdhTLg

@thomaskipf and <a href="/wellingmax/">Max Welling</a> strike back! in a new blog post w/ <a href="/Francesco_dgv/">Francesco Di Giovanni</a> <a href="/_JRowbottom/">James Rowbottom</a> et al we show that GCN-type models can be derived as gradient flows of Dirichlet-type energy and provably avoid low-frequency dominated dynamics bit.ly/3TdhTLg