Giovanni Petri (@lordgrilo) 's Twitter Profile
Giovanni Petri

@lordgrilo

Topology, complex networks, neuroscience; Professor @NUnetsi; PI @NPLab_; PI @ProjectCETI @CentaiInstitute; Angoleiro and wine-drinker by passion.

ID: 82566863

linkhttp://lordgrilo.github.io calendar_today15-10-2009 08:01:23

4,4K Tweet

3,3K Followers

1,1K Following

Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

🧠 Want to understand how different higher-order methods compare in brain connectivity analysis? Check out our new preprint — a fantastic collab with past & present NPLab members: 🔗 biorxiv.org/content/10.110…

🧠 Want to understand how different higher-order methods compare in brain connectivity analysis?

Check out our new preprint — a fantastic collab with past &amp; present <a href="/NPLab_/">NPLab</a>  members:
🔗 biorxiv.org/content/10.110…
Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

NPLab Matteo Neri simone poetto Marilyn Gatica Giovanni Petri 🧵 1/ Over the past years, brain connectivity research has moved beyond simple pairwise interactions. A wide range of higher-order interaction (HOI) methods — from information theory to topological data analysis — have emerged. But the field is quite fragmented. Let's dive in🧠

Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

NPLab Matteo Neri simone poetto Marilyn Gatica Giovanni Petri 2/ Brain models often focus on pairs of regions, but real interactions might involve groups acting together HOI methods aim to capture this, from detecting synergy and redundancy using different information-theoretic approaches to mapping topological cycles in brain networks.

Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

NPLab Matteo Neri simone poetto Marilyn Gatica Giovanni Petri 3/ Yet with all these new tools — PhiID, O-information, PED, persistent homology, triangles, scaffolds — no one knew how they compared, what they captured, or when to use which. This paper tackles this directly with a comprehensive comparison across 10 HOI metrics.

Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

NPLab Matteo Neri simone poetto Marilyn Gatica Giovanni Petri 4/ First big insight: HOI metrics fall into 3 categories: 🔴 Redundant: capture overlapping info (e.g., within sensory networks) 🔵 Synergistic: capture integrative info (e.g., across systems) 🟣 Topological: bridge the two, identifying mesoscale structures

<a href="/NPLab_/">NPLab</a> <a href="/matte_blacks/">Matteo Neri</a> <a href="/simonepoetto/">simone poetto</a> <a href="/GaticaMarilyn/">Marilyn Gatica</a> <a href="/lordgrilo/">Giovanni Petri</a> 4/ First big insight: HOI metrics fall into 3 categories:

🔴 Redundant: capture overlapping info (e.g., within sensory networks)
🔵 Synergistic: capture integrative info (e.g., across systems)
🟣 Topological: bridge the two, identifying mesoscale structures
Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

NPLab Matteo Neri simone poetto Marilyn Gatica Giovanni Petri 5/ Despite different math, rank differences of all HOI metrics align with the brain's core hierarchy: from sensory (unimodal) to associative (transmodal) cortex. This “HOI axis” reflects fundamental computational principles embedded in the brain’s layout. 🧭

<a href="/NPLab_/">NPLab</a> <a href="/matte_blacks/">Matteo Neri</a> <a href="/simonepoetto/">simone poetto</a> <a href="/GaticaMarilyn/">Marilyn Gatica</a> <a href="/lordgrilo/">Giovanni Petri</a> 5/ Despite different math, rank differences of all HOI metrics align with the brain's core hierarchy: from sensory (unimodal) to associative (transmodal) cortex.

This “HOI axis” reflects fundamental computational principles embedded in the brain’s layout. 🧭
Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

NPLab Matteo Neri simone poetto Marilyn Gatica Giovanni Petri 6/ But there’s more. These metrics also reflect the brain’s neurochemistry: •Redundant metrics correlate with metabolic maps •Synergistic & topological metrics align with receptor distributions

<a href="/NPLab_/">NPLab</a> <a href="/matte_blacks/">Matteo Neri</a> <a href="/simonepoetto/">simone poetto</a> <a href="/GaticaMarilyn/">Marilyn Gatica</a> <a href="/lordgrilo/">Giovanni Petri</a> 6/ But there’s more.
These metrics also reflect the brain’s neurochemistry:
•Redundant metrics correlate with metabolic maps 
•Synergistic &amp; topological metrics align with receptor distributions
Andrea Santoro (@andreasantor0) 's Twitter Profile Photo

NPLab Matteo Neri simone poetto Marilyn Gatica Giovanni Petri 7/ When it comes to applications, HOIs show their power: 🎯 For brain fingerprinting (ID'ing individuals), HOI metrics outperform classical functional connectivity (FC)

<a href="/NPLab_/">NPLab</a> <a href="/matte_blacks/">Matteo Neri</a> <a href="/simonepoetto/">simone poetto</a> <a href="/GaticaMarilyn/">Marilyn Gatica</a> <a href="/lordgrilo/">Giovanni Petri</a> 7/ When it comes to applications, HOIs show their power:

🎯 For brain fingerprinting (ID'ing individuals), HOI metrics outperform classical functional connectivity (FC)
Fernando Rosas 🦋 (@_fernando_rosas) 's Twitter Profile Photo

Excellent post distinguishing mechanisms from behaviours! 👇🏽👇🏽👇🏽 (We have a similar discussion in the context of high-order stuff here: arxiv.org/abs/2203.12041)

Nina Miolane 🦋 @ninamiolane.bsky.social (@ninamiolane) 's Twitter Profile Photo

You're into neuroscience and AI? 🧠 🤖 You're working on the mathematics that drives biological and artificial neural networks? We want to hear from you! Submit to NeurReps 2025 at NeurIPS Conference! 📅 Deadline: Aug 22 📄 Two tracks: 9p proceedings & 4p extended abstracts