Peter Holderrieth (@peholderrieth) 's Twitter Profile
Peter Holderrieth

@peholderrieth

CS PhD student at @MIT • Generative Modeling and AI4Science • Prev: Stats/Neuro @OxfordUni• Math at @HCM_Bonn • Former: @AIatMeta

ID: 1546648898730692609

linkhttp://www.peterholderrieth.com calendar_today12-07-2022 00:13:40

28 Tweet

1,1K Followers

394 Following

Peter Holderrieth (@peholderrieth) 's Twitter Profile Photo

Check out our new Flow Matching guide and codebase! It also includes an extended explanation of Generator Matching with more examples! arxiv.org/abs/2412.06264

Ricky T. Q. Chen (@rickytqchen) 's Twitter Profile Photo

Want to learn continuous & discrete Flow Matching? We've just released: 📙 A guide covering Flow Matching basics & advanced methods arxiv.org/abs/2412.06264. 💻 An open source codebase with image & text examples github.com/facebookresear…. 🗣️ A Flow Matching tutorial #NeurIPS2024.

Want to learn continuous & discrete Flow Matching? We've just released:

📙 A guide covering Flow Matching basics & advanced methods arxiv.org/abs/2412.06264.

💻 An open source codebase with image & text examples github.com/facebookresear….

🗣️ A Flow Matching tutorial #NeurIPS2024.
Hannes Stärk (@hannesstaerk) 's Twitter Profile Photo

New paper (and #ICLR2025 Oral :)): ProtComposer: Compositional Protein Structure Generation with 3D Ellipsoids arxiv.org/abs/2503.05025 Condition on your 3D layout (of ellipsoids) to generate proteins like this or to get better designability/diversity/novelty tradeoffs. 1/6

Tanishq Mathew Abraham, Ph.D. (@iscienceluvr) 's Twitter Profile Photo

Course material for an MIT class "Introduction to Flow Matching and Diffusion Models", looks great if you want a principled and hands on understanding of diffusion models/flow matching

Course material for an MIT class "Introduction to Flow Matching and Diffusion Models", looks great if you want a principled and hands on understanding of diffusion models/flow matching
MIT Jameel Clinic for AI & Health (@aihealthmit) 's Twitter Profile Photo

What if you could build any kind of generative AI model using one universal tool? Peter Holderrieth, an @mit PhD student in the lab of @aihealthmit PI Tommi Jaakkola, explains what the future of genAI could look like in ~2 minutes!

Ricky T. Q. Chen (@rickytqchen) 's Twitter Profile Photo

Generator Matching is a unifying framework for Markov processes beyond diffusion. This framework allows jumps to update states, and naturally enables combinations of flows and jumps via a Markov superposition of stochastic processes. Oral by Peter Holderrieth Sat 3:30pm.

Generator Matching is a unifying framework for Markov processes beyond diffusion.

This framework allows jumps to update states, and naturally enables combinations of flows and jumps via a Markov superposition of stochastic processes.

Oral by <a href="/peholderrieth/">Peter Holderrieth</a> Sat 3:30pm.
Anthony Costa (@anthonycosta) 's Twitter Profile Photo

Congratulations to Peter Holderrieth Michael Albergo @ICLR2025 and Tommi Jaakkola for winning the best paper award for their work entitled "LEAPS: A discrete neural sampler via locally equivariant networks" at this year's Frontiers in Probabilistic Inference workshop #ICLR2025!

Congratulations to <a href="/peholderrieth/">Peter Holderrieth</a> <a href="/msalbergo/">Michael Albergo @ICLR2025</a> and Tommi Jaakkola for winning the best paper award for their work entitled "LEAPS: A discrete neural sampler via locally equivariant networks" at this year's Frontiers in Probabilistic Inference workshop #ICLR2025!