
qphong
@qphong
ID: 219377467
24-11-2010 18:03:13
38 Tweet
41 Followers
69 Following

The #ICML2022 paper of Arun Verma Dai Zhongxiang Bryan Kian Hsiang Low considers #BayesianOptimization with delayed feedback by exploiting censored feedback to achieve better exploration and hence smaller regret. Paper: proceedings.mlr.press/v162/verma22a.⦠Check us out @ icml.cc/virtual/2022/pā¦

The #ICML2022 paper of Sebastian Tay chuan-sheng Bryan Kian Hsiang Low boosts efficiency of distributionally robust #BayesianOptimization using worst-case sensitivity that caters to arbitrary convex distribution distances. Paper: proceedings.mlr.press/v162/tay22a.ht⦠Check us out @ icml.cc/virtual/2022/pā¦

The #IJCAI2022 paper of Rachael Sim Xinyi Xu Bryan Kian Hsiang Low surveys #DataValuation in #MachineLearning with open challenges. #ShapleyValue #FederatedLearning #InterpretableML #ActiveLearning Paper: doi.org/10.24963/ijcai⦠Talk: Jul 28 3:30pm Poster session 2 stand 34 row 1

The #UAI2022 paper of Shu Yao č”å¾å¤ Dai Zhongxiang Bryan Kian Hsiang Low proposes Neural Ensemble Search via Bayesian Sampling for #NeuralArchitectureSearch. Paper: comp.nus.edu.sg/~lowkh/pubs/ua⦠Check us out @ spotlight session 6 (3 Aug 17:15-17:55) and poster session I with ID: 406.

Congrats!!! to qphong Dai Zhongxiang Shu Yao Wu Zhaoxuan Bryan Kian Hsiang Low patrick jaillet for their accepted papers on #BayesianOptimization #NeuralArchitectureSearch #ShapleyValue #FederatedLearning #DataValuation at #NeurIPS2022:


Postdoc & RA positions in #DataCentricAI Collaborative ML/#FederatedLearning #DataValuation Incentive-Aware Mechanism Design #MachineUnlearning NUS Computing See groups.google.com/u/2/g/ml-news/⦠#ICML2023 #ICLR2023 #AAAI2023 #IJCAI2023 #UAI2023 #AISTATS2023 Meet me @ #NeurIPS2022

Postdoc & RA positions in Learning with Less Data: #AutoML pipeline #ActiveLearning #BayesianOptimization #NeuralArchitectureSearch NUS Computing See groups.google.com/u/2/g/ml-news/⦠#ICML2023 #ICLR2023 #AAAI2023 #IJCAI2023 #UAI2023 #AISTATS2023 Meet me @ #NeurIPS2022


To fairly trade off betw payoff & model rewards in collaborative ML, the #NeurIPS2022 work of qphong Bryan Kian Hsiang Low patrick jaillet refines #ShapleyValue into a conditional variant representing pairwise payoff flows betw parties. #FederatedLearning #DataValuation

The #NeurIPS2022 work of Dai Zhongxiang Shu Yao Bryan Kian Hsiang Low patrick jaillet introduces theoretically grounded batch #BayesianOptimization algorithms using #DeepNeuralNetworks (DNNs) as the surrogate function that can handle categorical, high-dimensional, or image inputs. #NeuralTangentKernel

To understand and boost gradient-based #TrainingFree #NeuralArchitectureSearch algorithms, the #NeurIPS2022 work of Shu Yao Dai Zhongxiang Wu Zhaoxuan Bryan Kian Hsiang Low provides the first unified theoretical study and principled improvement for them based on theory of #NeuralTangentKernel.

Congrats Lam Chi Thanh (Steve) Xinyi Xu Sebastian Tay weicong Wu Zhaoxuan Flint Xiaofeng Fan qphong Dai Zhongxiang Shu Yao Arun Verma chuan-sheng patrick jaillet. Accepted papers @ #AISTATS2023 #ICLR2023: Zeroth-Order Optimization #BayesianOptimization #ActiveLearning #FederatedLearning #AI4Science


To guarantee fairness in approximating #ShapleyValue, the #AAAI2023 work of Zijian Zhou Xinyi Xu Rachael Sim chuan-sheng Bryan Kian Hsiang Low introduces probably approximately Shapley fairness and a novel approximation. #InterpretableML #DataValuation #FederatedLearning


The #AISTATS2023 AISTATS Conference work of Xinyi Xu Wu Zhaoxuan chuan-sheng Bryan Kian Hsiang Low proposes a fair collaborative #ActiveLearning algo w. individual rationality for #ScientificDiscovery tasks. Paper: proceedings.mlr.press/v206/xu23e.html Poster: Wed 26 Apr 4:30-7pm Auditorium 1 Foyer 26

The #AISTATS2023 AISTATS Conference work of Sebastian Tay qphong Bryan Kian Hsiang Low proposes a sample-efficient no-regret #BayesianOptimization algo for finding #NashEquilibrium in general-sum games w. unknown payoffs. Paper: proceedings.mlr.press/v206/tay23a.ht⦠Poster: Thu 27 Apr 2-4:30pm Aud 1 Foyer 132

Congrats to Apivich H. (Kaotoo) Dai Zhongxiang jasraj Rui Qiao Lin Xiaoqiang Xinyi Xu chuan-sheng see-kiong! Accepted papers ICML Conference #ICML2023: #ActiveLearning #NeuralTangentKernel #DeepNeuralNetworks #ShapleyValue #DataValuation #FederatedLearning #CausalInference #GaussianProcess


The #ICLR2023 work of Shu Yao Dai Zhongxiang weicong Arun Verma patrick jaillet Bryan Kian Hsiang Low proposes a query-efficient Zeroth-Order Optimization algo w. trajectory-informed derivative est. #BayesianOptimization #GaussianProcess Paper: openreview.net/pdf?id=n1bLgxH⦠Present: iclr.cc/virtual/2023/pā¦

Congrats! to Rachael Sim Sebastian Tay Xinyi Xu greg Lam Chi Thanh (Steve) Arun Verma Dai Zhongxiang Shu Yao qphong @nghiaht87 yehong chuan-sheng patrick jaillet Accepted papers NeurIPS Conference #NeurIPS2023: #ShapleyValue #DataValuation #FederatedLearning #BayesianOptimization #AI4Science


When using #ChatGPT, how do u decide what instruction to give it? xqlin98.github.io/INSTINCT/ Joint work on Automatic Prompting with Lin Xiaoqiang Wu Zhaoxuan Dai Zhongxiang Hu.Wenyang Shu Yao see-kiong patrick jaillet. #LLM #LLMs #PromptEngineering #GenerativeAI (1/n)

Congrats! Gregory Lau Apivich H. (Kaotoo) He Zhenfeng Sebastian Tay Wu Zhaoxuan Rui Qiao qphong ruth Dai Zhongxiang @ZCODE patrick jaillet Accepted ICLR 2026 #ICLR2024: #ShapleyValue #DataValuation #FederatedLearning #BayesianOptimization #NeuralArchitectureSearch #NeuralTangentKernel #AI4Science
