 
                                Stephen James
@stepjamuk
Prev PI of a Robot Learning Lab in London.
Postdoc @UCBerkeley w/ @pabbeel.
PhD Imperial College London w/ @ajdDavison. AI, Robotics, Machine Learning ๐ค
ID: 109603566
https://stepjam.github.io/ 29-01-2010 16:36:42
249 Tweet
4,4K Followers
150 Following
 
        ๐ฃ๐ผ๐ฝ๐๐น๐ฎ๐ฟ ๐ผ๐ฝ๐ถ๐ป๐ถ๐ผ๐ป: "๐ช๐ฒ ๐ป๐ฒ๐ฒ๐ฑ ๐บ๐ผ๐ฟ๐ฒ ๐ฑ๐ฎ๐๐ฎ." ๐๐ฐ๐๐๐ฎ๐น ๐ฟ๐ฒ๐ฎ๐น๐ถ๐๐: ๐ญ๐ฌ๐ฌ ๐ด๐ฟ๐ฒ๐ฎ๐ ๐ฑ๐ฒ๐บ๐ผ๐ > ๐ญ๐ฌ,๐ฌ๐ฌ๐ฌ ๐บ๐ฒ๐ฑ๐ถ๐ผ๐ฐ๐ฟ๐ฒ ๐ผ๐ป๐ฒ๐. ๐ง๐ต๐ฒ ๐บ๐๐๐ต: More demonstrations always mean better models. ๐ง๐ต๐ฒ ๐ฟ๐ฒ๐ฎ๐น๐ถ๐๐: I've seen models trained
 
        ๐'๐๐ฒ ๐ต๐ฒ๐ฎ๐ฟ๐ฑ ๐๐ต๐ถ๐ ๐ฎ ๐น๐ผ๐ ๐ฟ๐ฒ๐ฐ๐ฒ๐ป๐๐น๐: "๐ช๐ฒ ๐๐ฟ๐ฎ๐ถ๐ป๐ฒ๐ฑ ๐ผ๐๐ฟ ๐ฟ๐ผ๐ฏ๐ผ๐ ๐ผ๐ป ๐ผ๐ป๐ฒ ๐ผ๐ฏ๐ท๐ฒ๐ฐ๐ ๐ฎ๐ป๐ฑ ๐ถ๐ ๐ด๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐น๐ถ๐๐ฒ๐ฑ ๐๐ผ ๐ฎ ๐ป๐ผ๐๐ฒ๐น ๐ผ๐ฏ๐ท๐ฒ๐ฐ๐ - ๐๐ต๐ฒ๐๐ฒ ๐ป๐ฒ๐ ๐ฉ๐๐ ๐บ๐ผ๐ฑ๐ฒ๐น๐ ๐ฎ๐ฟ๐ฒ ๐ฐ๐ฟ๐ฎ๐๐!" Let's talk about what's actually
 
        ๐ ๐ต๐ฎ๐ฑ ๐๐ผ ๐๐ฎ๐น๐ธ ๐ณ๐ผ๐ฟ ๐ผ๐๐ฒ๐ฟ ๐ฎ๐ป ๐ต๐ผ๐๐ฟ ๐๐ผ ๐ด๐ฒ๐ ๐๐ผ ๐๐ต๐ฒ ๐ผ๐ณ๐ณ๐ถ๐ฐ๐ฒ ๐๐ผ๐ฑ๐ฎ๐ ๐ฏ๐ฒ๐ฐ๐ฎ๐๐๐ฒ ๐ผ๐ณ ๐ง๐๐ ๐๐๐ฟ๐ถ๐ธ๐ฒ๐. During my walk it made me think about how Japan is building a more sustainable future for both railways and railway workers.
 
         
        In robotics today, I see two common approaches to data collection: ๐ญ) ๐ฅ๐ฒ๐ฐ๐ผ๐ฟ๐ฑ ๐ฒ๐๐ฒ๐ฟ๐๐๐ต๐ถ๐ป๐ด ๐ฎ๐๐๐ป๐ฐ๐ต๐ฟ๐ผ๐ป๐ผ๐๐๐น๐ ๐ถ๐ป๐๐ผ ๐ ๐๐๐ฃ ๐ผ๐ฟ ๐ฅ๐ข๐ฆ ๐ฏ๐ฎ๐ด๐. These formats were designed for robotics debugging and replay, not for data-driven learning. โข They
 
                        
                    
                    
                    
                 
        ๐ง๐ต๐ฒ ๐ฏ๐ถ๐ด๐ด๐ฒ๐๐ ๐ฏ๐ฟ๐ฒ๐ฎ๐ธ๐๐ต๐ฟ๐ผ๐๐ด๐ต๐ ๐ถ๐ป ๐ฅ๐ผ๐ฏ๐ผ๐ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฎ๐ฟ๐ฒ๐ป'๐ ๐ฐ๐ผ๐บ๐ถ๐ป๐ด ๐ณ๐ฟ๐ผ๐บ ๐ป๐ฒ๐ ๐ฎ๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐ ๐ฎ๐ป๐๐บ๐ผ๐ฟ๐ฒ. After over a decade in the field of robot learning, I've noticed something: ๐ต๐ฉ๐ฆ ๐ฃ๐ช๐จ๐จ๐ฆ๐ด๐ต
 
                        
                    
                    
                    
                 
        ๐ช๐ต๐ฎ๐ ๐ถ๐ณ ๐ฟ๐ผ๐ฏ๐ผ๐ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ถ๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ ๐๐ต๐ฎ๐ ๐๐ผ๐ผ๐ธ ๐ญ๐ฐ ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ ๐๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ ๐๐ผ ๐ฏ๐๐ถ๐น๐ฑ... ๐ถ๐ป๐๐๐ฒ๐ฎ๐ฑ ๐๐ผ๐ผ๐ธ ๐ฑ๐ฎ๐๐? 1 year ago, I was leading research at the Dyson Robot Learning Lab in London, working with some
 
        Outgrowing our space, not our ambition. Our AgileX Robotics arm and the team have been putting in serious work building Robot Learning Infrastructure for the future. New office incoming. ๐โก๏ธ๐
 
                        
                    
                    
                    
                 
        ๐ฃ๐ผ๐ฝ๐๐น๐ฎ๐ฟ ๐ผ๐ฝ๐ถ๐ป๐ถ๐ผ๐ป: "Just collect more robot data." ๐๐ฟ๐๐๐ฎ๐น ๐ฟ๐ฒ๐ฎ๐น๐ถ๐๐: We're facing a 100,000-year data gap. While LLMs like ChatGPT are trained on text datasets equivalent to tens of thousands of human lifetimes of reading, the largest robot manipulation
 
                        
                    
                    
                    
                 
        Will we see humanoid robots deployed en mass by 2030? Our founder and CEO Stephen James whose been working in the field since 2016 shares his thoughts. ๐ช๐ต๐ฎ๐'๐ ๐๐ผ๐๐ฟ ๐๐ฎ๐ธ๐ฒ? What do you see as the biggest hurdles for humanoid adoption in your industry?
 
        ๐๐๐ฒ๐ฟ๐๐ผ๐ป๐ฒโ๐ ๐๐ฎ๐น๐ธ๐ถ๐ป๐ด ๐ฎ๐ฏ๐ผ๐๐ โ๐ฃ๐ต๐๐๐ถ๐ฐ๐ฎ๐น ๐๐" - the idea that we can simulate real-world environments so well that robots trained in simulation will work perfectly in reality. ๐ง๐ต๐ฒ ๐ฝ๐ฟ๐ผ๐บ๐ถ๐๐ฒ: Train in virtual worlds โ deploy anywhere. ๐ง๐ต๐ฒ
 
        As a newly appointed ๐๐๐๐ถ๐๐๐ฎ๐ป๐ ๐ฃ๐ฟ๐ผ๐ณ๐ฒ๐๐๐ผ๐ฟ at Imperial College London, I'm thrilled to announce the ๐ฆ๐ฎ๐ณ๐ฒ ๐ช๐ต๐ผ๐น๐ฒ-๐ฏ๐ผ๐ฑ๐ ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ ๐ฅ๐ผ๐ฏ๐ผ๐๐ถ๐ฐ๐ ๐๐ฎ๐ฏ (๐ฆ๐ช๐๐ฅ๐) at ๐๐บ๐ฝ๐ฒ๐ฟ๐ถ๐ฎ๐น ๐๐ผ๐น๐น๐ฒ๐ด๐ฒ ๐๐ผ๐ป๐ฑ๐ผ๐ป. ๐ฆ๐ฎ๐ณ๐ฒ ๐ช๐ต๐ผ๐น๐ฒ-๐ฏ๐ผ๐ฑ๐
 
        ๐ช๐ต๐ฎ๐ ๐ฑ๐ผ๐ฒ๐ ๐๐ต๐ฒ ๐จ๐ฆ/๐จ๐ ๐ง๐ฒ๐ฐ๐ต ๐ฃ๐ฟ๐ผ๐๐ฝ๐ฒ๐ฟ๐ถ๐๐ ๐๐ฒ๐ฎ๐น ๐บ๐ฒ๐ฎ๐ป ๐ณ๐ผ๐ฟ ๐๐ต๐ฒ ๐ฟ๐ผ๐ฏ๐ผ๐๐ถ๐ฐ๐ ๐ถ๐ป๐ฑ๐๐๐๐ฟ๐? The US/UK Tech Prosperity Deal signed last week isn't just another diplomatic handshake โ it's potentially reshaping how robotics development
 
                        
                    
                    
                    
                 
        ๐๐๐๐ฆ๐ง ๐ฟ๐ฒ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต๐ฒ๐ฟ๐ ๐ต๐ฎ๐๐ฒ ๐๐ฎ๐๐ด๐ต๐ ๐ฟ๐ผ๐ฏ๐ผ๐๐ ๐๐ผ ๐ป๐ฎ๐๐ถ๐ด๐ฎ๐๐ฒ ๐น๐ถ๐ธ๐ฒ ๐ต๐๐บ๐ฎ๐ป๐ ๐ฏ๐ ๐๐ฝ๐ฟ๐ฒ๐ฎ๐ฑ๐ถ๐ป๐ด (๐ฎ๐ป๐ฑ ๐ณ๐ผ๐ฟ๐ด๐ฒ๐๐๐ถ๐ป๐ด) ๐ถ๐ป๐ณ๐ผ๐ฟ๐บ๐ฎ๐๐ถ๐ผ๐ป, ๐ฏ๐ผ๐ผ๐๐๐ถ๐ป๐ด ๐ฒ๐ณ๐ณ๐ถ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ ๐ฏ๐ ๐ฏ๐ฌ%. Their โPhysical AIโ system lets
 
                        
                    
                    
                    
                 
        "๐ช๐ต๐ ๐ฐ๐ฎ๐ป'๐ ๐๐ฒ ๐ท๐๐๐ ๐๐ฎ๐ธ๐ฒ ๐๐ฃ๐ง-๐ฐ, ๐ฝ๐น๐๐ด ๐ถ๐ ๐ถ๐ป๐๐ผ ๐ฎ ๐ฟ๐ผ๐ฏ๐ผ๐, ๐ฎ๐ป๐ฑ ๐ฐ๐ฎ๐น๐น ๐ถ๐ ๐ฎ ๐ฑ๐ฎ๐?" Because foundation models for robotics face fundamentally different challenges than language models. Let me explain the technical reality:
 
         
        ๐ง๐ต๐ฒ ๐ฝ๐ฟ๐ฒ๐ฑ๐ถ๐ฐ๐๐ถ๐ผ๐ป: Morgan Stanley forecasts a $5 trillion humanoid robot market by 2050. ๐ง๐ต๐ฒ ๐ฐ๐ต๐ฎ๐น๐น๐ฒ๐ป๐ด๐ฒ: Getting there will be harder than most people realise. Let me share some perspective on what it actually takes: ๐๐๐ฟ๐ฟ๐ฒ๐ป๐ ๐ฝ๐ฟ๐ผ๐ด๐ฟ๐ฒ๐๐ (2025):
 
        ๐ก๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ ๐ฎ๐ด๐ผ, ๐ ๐๐๐ผ๐ผ๐ฑ ๐ถ๐ป ๐ฎ ๐๐บ๐ฎ๐น๐น ๐๐ผ๐ผ๐ด๐น๐ฒ ๐ฐ๐ผ๐ป๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ ๐ฟ๐ผ๐ผ๐บ ๐๐ถ๐๐ต ๐ญ๐ฌ๐ฌ ๐ฝ๐ฒ๐ผ๐ฝ๐น๐ฒ, ๐๐ต๐ฎ๐ฟ๐ถ๐ป๐ด ๐บ๐ ๐ณ๐ถ๐ฟ๐๐ ๐ฃ๐ต๐ ๐๐ผ๐ฟ๐ธ. ๐ง๐ผ๐ฑ๐ฎ๐, ๐๐ต๐ฎ๐ ๐๐บ๐ฎ๐น๐น ๐ฟ๐ผ๐ผ๐บ ๐ต๐ฎ๐ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ $๐ญ๐ฒ.๐ฑ๐ ๐ถ๐ป๐ฑ๐๐๐๐ฟ๐...
 
                        
                    
                    
                    
                 
        